Full resolution (JPEG) - On this page / på denna sida - Sidor ...
<< prev. page << föreg. sida << >> nästa sida >> next page >>
Below is the raw OCR text
from the above scanned image.
Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan.
Ser du något fel? Korrekturläs sidan nu!
This page has never been proofread. / Denna sida har aldrig korrekturlästs.
129
Meter i Vest for Nordpynten af Prince Charles Poreland.
Herfra til B er 1070 km. Derefter beregnes
Skæringspunkterne for 0.3, 0.2 og 0.1 Meters Hojde. Udenfor
Prince Charles Foreland bliver Hastigheden 0.052 Meter
pr. Secund.
Mellem B og Grønland (69°.2 N. Br.) have vi et rent
Strømprofil til Bestemmelsen af Vindfladens Højde ved
Grønlands Kyst. Fra B af voxer Hastigheden, indtil den
i en Afstand af 335 km uaar en Maximumsværdi af 0.13
m. p. S. I dette Punkt bliver Højden, beregnet efter den
paraboliske Formel, 0.3065 Meter.
1 en Afstand fra dette Punkt henimod Grønland af
510 km («) giver PI. XXXII en Hastighed af0.03m.p.S.
Lægges over dette Sint en Parabel, med Toppunkt inde i
Grønland og Axen nedad, saa have vi, naar Afstanden fra
dette Toppunkt til det Punkt, hvor Hastigheden er 0.03
(u), er x, og Afstanden til det Punkt, hvor Hastigheden er
0.13 ( Z7), er A’:
line and the line of equal height for 0.4 metre, lies
west of the northern extremity of Prince Charles’Foreland.
From here to B the distance is 1070 kilometres. With
these figures, the points of section are computed for a height
of 0.3, 0.2, and 0.1 metre. Off Prince Charles’ Foreland,
the velocity becomes 0.052 metre per second.
Between B and Greenland (lat. Gi)°.2 N), we have
a clear cross-section for determining the height of the
wind-surface at the coast of Greenland. From B the
velocity increases, till, at a distance of 335 kilometres,
it attains a maximum-value of 0.13 metre per second. At
this point, the height, computed according to the parabolic
formula, becomes 0.3065 metre.
At a distance of 510 kilometres (fl) from this point
towards Greenland, the Pl. XXXII gives a velocity of
0.03 metre per second. If, on this section, we lay a
parabola with its vertex in the interior of Greenland and
its axis pointing downwards, we shall have, assuming
the distance from the said vertex to the point where the
velocity is 0.03 (ii) to be x, and the distance to the point
where the velocity is 0.13 ( U) to be A’
x = (X-x)
U—u
,510 = 153 km.
Altsaa X = 510 -f 153 = 663 km.
Heraf faar man H„ = k UX= 0.6132 m ved Toppunktet.
Da Kysten ligger 110 km fra Toppunktet, bliver
ved Kysten
Hence X = 510 -}- 153 = 663’ kilometres.
We thus get H,, = k ü X =0.6132 metre at the vertex.
Now, since the coast lies at a distance of 110
kilometres from the vertex, at the coast
H„
H = H„ (H5= 0.6132 0.0169 Meter.
\li(jo \b6o/
H„ —H = H„
Altsaa H = 0.6132 —0.0169 = 0.5963 m,
og Højden ved Grønland over B =
0.3065 -j- 0.5963 = 0.9028 Meter.
Jeg sætter saaledes Vindfladens Højde ved Grønland
til 0.9 Meter.
Mellem det her beskrevne Snit og Spidsberg-Axen er
lagt en Normal til Grønlands Kyst paa 76°.5 N. Br. Paa
denne er oprejst to Stykker congruente Parabelbuer, den
ene med Toppunkt i B og Axen opad, den anden med
Toppunktet inde i Grønland (paa 24° W. Længde) med
Axen nedad. Imellem B og dette Punkt er en Afstand af
1300 km. Midt imellem begge bliver Højden over B
i (0.917) eller 0.458 Meter, Hastigheden 0.10 m. p. S. Ved
Grønlands Kyst have vi Højden 0.9 Meter og Hastigheden
0.03 m.- p. S.
Imellem Grønland og Islands Nordkyst er lagt et
Normalsnit. Vi have her ved Grønlauds Kyst Højden
i? = 0.9 m, Hastigheden u =0.04 ni. p. S. og i en Afstand
fl af 240 km derfra en Maximumshastighed U af 0.13 ni.
]). S. I den tilsvarende Parabel, hvis Toppunkt ligger inde
i Grønland med Axen nedad, kalde vi Abscissen for det
Punkt, som har Hastigheden u, for h, og Ordinaten for x,
og for det Punkt, som har Hastigheden U. Abscissen H
og Ordinaten X.
Hence H = 0.6132 -0.0169 = 0.5963 metre,
and the height at Greenland above B =
0.3065 + 0.5963 = 0.9028 metre.
Accordingly, I take the height of the wind-surface on
the coast of Greenland at 0.9 metre.
Between the above-described section and the
Spitzbergen axis, a normal line has been drawn to Greenland,
touching the coast in lat. 76°.5 N. Along this line have been
constructed two congruent parabolic curves, the one with
its vertex in B and its axis pointing upwards, the other
with its vertex in the interior of Greenland (long. 24° W)
and its axis pointing downwards. Between B and this
point, the distance measures 1300 kilometres. Midway
between both, the height above B becomes (0.917), or
0.458 metre, the velocity 0.10 metre per second. At the
coast of Greenland, we have the height 0.9 metre, and the
velocity 0.03 metre per second.
Between Greenland and the north coast of Iceland,
a normal section has been laid down. Wo have here, at
the coast of Greenland, the height // = 0.9m., the velocity
fl = 0.04 m. per see., and at the distance, fl, of 240
kilometres from thence a maximum-velocity, U. of 0.13 m. per
see. In the corresponding parabola, the vertex of which
lies in the interior of Greenland, with its axis pointing
downwards, we call the abscissa h and the ordinate x for the
point with the velocity u, and the abscissa H and the
ordinate A’ for the point with the velocity Z7.
Dun norske Nnrdlmvsexpedii:
H. Molin: Nordhavets Dybder, Temperatur og Strømninger.
<< prev. page << föreg. sida << >> nästa sida >> next page >>