- Project Runeberg -  Den Norske Nordhavs-expedition 1876-1878 / The Norwegian North-Atlantic Expedition 1876-1878 / 2. Bind /
200

(1880-1901) [MARC]
Table of Contents / Innehåll | << Previous | Next >>
  Project Runeberg | Catalog | Recent Changes | Donate | Comments? |   

Full resolution (JPEG) - On this page / på denna sida - Sidor ...

scanned image

<< prev. page << föreg. sida <<     >> nästa sida >> next page >>


Below is the raw OCR text from the above scanned image. Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan. Ser du något fel? Korrekturläs sidan nu!

This page has never been proofread. / Denna sida har aldrig korrekturlästs.

5 e’ Constanter; der udtrykke Havvandets
Sammentrykkelighed,
p Trykket i Atmosfærer i Dybden h.

saa har man (Se Side 148).

Let rf and e’ be constants expressing the compressibility ot
sea-water;

p the pressure, in atmospheres, at the depth lr,
then we have (See page 148)

_ ff,. S (I — J eos 2 (p’) (i -I- b h) dh
i —•//!> + e’ p-

t[—e’p er altsaa Havvandets
Saminentrykkelighods-coefticient. Ved Integration findes, da p — 0, naar h — 0,
og «S’ varierer saa lidet med Dybden, at man kan regne
med constant —.

if—e’p is accordingly the coefficient of compression
for sea-water. Integrating, we find, as p = 0 when 7/= 0.
and 8 varies so little with deptli as to admit of computing
with constant 2’.

ff,, Ji ( i — ß eos 2 (p) (i 4 /’)
1 — \ (l — 3 p) P

Det rene Vands Sanimontrykkelighedscoofticient kan —
ifølge Travaux et mémoires du bureau international des
poids et mesures. Tome II. D, 30 fremstilles ved Formelen

The coefficient of compression for pure water, may.
according to Travaux et, mémoires du bureau international
des poids et mesures, Tome II. D. 30. lie expressed by
the formula

r — 50.153 —0.158005. T—0.0003141113. T3 Milliontedele (millionths),

hvor Ter Temperaturen (/,„ = 50.153).

Regnault har fundet Sainmentrykkelighedscoefficienten
for Havvand af en Temperatur af 17°.ö og en specifisk
Vægt af 1.0204 at være 43.0 Milliontedele (Moussons Fysik.
I. S. 253). Antages den samme Lov at være gjældende
for Havvand som for rent Vand med Hensyn til
Temperaturens Indflydelse paa Sanmientrykkeligheden, saa bliver
ved 0° Havvandets Coefficient

)/,, = 43.6 4 2.7825 4 0.0962 ~
J. Y. Buchanan har fundet, at Havvandets
Coeffi-cient. er 02.3 Procent af det rene Vands1. Regnet med
ovenstaaende Værdier findes saaledes for 0°: //„ = 50.153 X
0.923 =: 46.291 X 10 Middel af disse to Bestemmelser
er 46.385, og jeg sætter saaledes for Havvand ved T" og
en Atmosfæres Tryk

// = 46.385 — 0.1590. T — 0.000314.
T-El’te.r foreløbig Beregning fandtes den til e’ svarende
Værdi for rent Vand « = 0.006107 Milliontedele. Jeg sætter

derfor ’ , =f ~ 0.0001218 og t-, = 0.00008118. Den
nøjagtige Van’ di uf bliver, som nedenfor vil sees, 0.00008384.
Det gjør ingen Forskjel i Vau-dierne for p, 0111 man regner
med den ene eller den anden af disse Værdier for f ,■

Til Beregningen af tf anvender jeg Middeltallet af
Havtemperaturerne i Stykker paa 100 Favnes Dybde fra
Overfladen til Bunden. Disse ere givne af
Temperatur-røkkerne eller Tempe r at u r t versn itten e gjennem vedkommende
Station. Middeltallet kaldes T og Nævneren i Formelen
for p bl i vel-

in which T is the temperature (’,„ = 50.153).

Regnault found the coefficient of compression for
sea-water with a temperature 17°.5 and a specific gravity
1.0204 to be 43.0 millionths (Moussons Physik. I, p. 253).
Now, assuming the same law to apply for sea-water as
for pure water with regard to the influence of temperature on
compressibility, the coefficient for sea-water at 0° will be

i.4787 Milliontedele (millionths).

J. Y. Buchmann found the coefficient of sea-water to
be 92.3 per cent compared to that of pure water.1
Computing with the above-given values, we find accordingly for
0°: 1/,, = 50.153 X 0.923 = 46.291 X io-0. The mean of
these two determinations is 46.385, and therefore T take
for sea-water at T" and a pressure of one atmosphere
rf — 46.385 — 0.1590. T— 0.000314.
T-A preliminary computation gave as the value for pure
water corresponding to e’. e = 0.006107 millionths. Hence

I take , = ~ 0.0001218. and

3

0.00008118. Tile

true value of will, as shown farther 011. be 0.00008384.

3

It makes 110 difference in the values for p whether we
compute with the one or the other of these values for

For computing 1/ I make use ol’ the mean of the
temperatures of the sea for intervals ol’ 100 fathoms, from the
surface te the bottom. These temperatures are given by
the serial temperatures, or by the temperature-sections
passing through the Station. The mean I call T. and the
numerator in the formula for p becomes

1 Professor Tait liar fumlet (Proceedings of the Royal Society
Edinburgh f. 18S’,>. S. 224) 02.5 Procent, og senere (L. c. f. 1SS4.
Side T.’.s) 02.4 Procent.

1 Professor Tait lias found (Proceedings of the Koyal Society
Edinburgh jj. 224) 02-". per cent, and later .ibid. for 1*S4. p.

7.">8) 02.4 per cent.

<< prev. page << föreg. sida <<     >> nästa sida >> next page >>


Project Runeberg, Sun Dec 10 20:01:49 2023 (aronsson) (download) << Previous Next >>
https://runeberg.org/nordhavexp/2/0384.html

Valid HTML 4.0! All our files are DRM-free