Full resolution (JPEG) - On this page / på denna sida - Sidor ...
<< prev. page << föreg. sida << >> nästa sida >> next page >>
Below is the raw OCR text
from the above scanned image.
Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan.
Ser du något fel? Korrekturläs sidan nu!
This page has never been proofread. / Denna sida har aldrig korrekturlästs.
Don sandsynlige Fejl af 1 01 >s.: <) = + i.qi Favn.
Den empiriske Formel tilfredsstiller altsaa Observationerne
fuldkommen saa godt som den fysiske (d’ = + i .<54).
Man faar af Formelen
The probable error of l observation + 1.91 fathom.
Hence the empirical formula satisfies the observations quite
as well as the physical (()’=+ 1.94).
We get from the formula
dh _ i
d (m’—m) ~~ 2( i -
25275
fl cos 2 If)
O.OO62658
2(1 — ,>’ cos 2
0.00000^4q8
.(m’-hi i — v/ \
if) 2 (i — J eos 2 7)
(m’—ni)-.
faar man dh. z
Sættes som ovenfor ä (m’—■m) — 0.081 111111.
0.994 H- 0.0005 (m’—m)
2( i — eos 2 if ) ’
en Størrelse, der. mellom Overfladen og 200(1 Favne, holder
sig mellem 0.9(54 og 1.110 Favn. Med Piezomotret og
den empiriske Formel faar man altsaa Dybdorne paa + 1 Fv.
1 den empiriske Formel er intet Hensyn taget til at
Vandets Sammentrykkelighed er afhængig af Temperaturen.
Det rene Vands Sammentrykkelighed» Variation mod
Temperaturen samt Havvandets Sammentrykkelighed og dens
Variation med Temperaturen, gaar. da Temperaturen i
Regelen aftager med Dybden, ind i Coefficientorno for
(m’—m)-og (m’ — m’f. Formelen indeslutter 011 midlere Va-rdi af / ,
passende for do lioje Bredder i vort Nordhav.
Sætter man. for at tage Hensyn til Temperaturens
Indflydelse paa Vandets Sammentrykning i Piezomotret,
Ligningen for Dybdon under Formen:
2ii — ß eos 2 if) h = a (1 + q t) (m’
idet Saminontrvkkelighedscoofficienton (i/t = i/t, (1 — q f)l
fore-koinmer i Nævneren af Coefficienten til (m’—m), har man
Putting
have d h — w
before d(m’—m) = 0.081 mm.,
0.994 4- 0.0005 (wV—m)
2 (1 — eos 2 if)
a quantity that ranges, between the surface and 2000
fathoms, from 0.964 to 1.110 fathom. With the
piezometer and the empirical formula, we can, therefore,
determine the depth within + 1 fathom.
In the empirical formula, no regard has been taken
to the compressibility of water being dependent on
temperature. The variation in compressibility of pure water with
temperature, as also the compressibility of sea-water and
its variation with temperature, will, the temperature
decreasing as a rule with depth, be included in the coefficients for
(m’—m)- and (m’—»if. The formula involves a mean
value of it adapted to the high latitudes of our North Ocean.
If, that regard may be had to the influence of
temperature 011 the compression of the water in the piezometer,
we put the equation for depth under the form
—m) + b (m’—m)- -)- c (m’—w)\
the coefficient of compression (ijt = i]0 (i—q †)) occurring
in the numerator of the coefficient of (m’—m), we have
0.1590
’l — =0.00^1702; lop; q— 70010Q—10.
50.153
faar da folgeude Værdier for log (Coeff. t. a)
We then get the following values for log (coeff. for
a): -
qt
11 qt) (m’
’ 2(i — i co:
-m)
2 Cf)
I 2°.6 +0.00824 0.86847
2 0 .77 + 244 1.52803
3 — i -35 —0.00428 1.98401
4 — ■ -37 — 434 2.00580
5 — i .42 — 450 2.02370
6 — I .20 — 400 2.02574
7 — i -53 - 485 2.06850
8 - ’ -47 466 2.00883
t) — i -53 485 2.12173
10 — 1 -50 378 2.10148
Factororne b. c og h blive de samme som ovenfor.
Endeligningerne blive:
The factors b, c, and h. will bo the same
The normal equations are
above
114352. a-f 14557772. ft-f 1904468269. c— 1450564
14557772. a+ «912740543. b-\- 257081182958. c— 184843697
1904468269. a257081182958. b 35422403423676. c. — 24200418357
hvoraf (whence) a =
bz
12.089666
0.00660055
—0.000014704
log ei = 1.0824143
log b = 7.8195832 10
log c — 5.1674405,,—10.
<< prev. page << föreg. sida << >> nästa sida >> next page >>