- Project Runeberg -  Machinists' and Draftsmen's Handbook /
80

(1910) Author: Peder Lobben - Tema: Mechanical Engineering
Table of Contents / Innehåll | << Previous | Next >>
  Project Runeberg | Catalog | Recent Changes | Donate | Comments? |   

Full resolution (JPEG) - On this page / på denna sida - Logarithms - Short rules for figuring by logarithms

scanned image

<< prev. page << föreg. sida <<     >> nästa sida >> next page >>


Below is the raw OCR text from the above scanned image. Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan. Ser du något fel? Korrekturläs sidan nu!

This page has never been proofread. / Denna sida har aldrig korrekturlästs.

So LOGARITHMS.
Example.
* log. 2401 3.380392
Log. -v/2401 = —^ = 1 = 0.845098
and this logarithm corresponds to the number 7.
EXPONENTS.
The logarithm of a power divided by the logarithm of the
.root is equal to the exponent of the power.
Example.
8* = 64
log. 64
x =
x =
log. 8
1.80618
0.90309
2
The logarithm of a quantity under the radical sign divided
by the logarithm of the root is equal to the index of the root.
Example. x
8 = V512
x _ log. 512
log. 8
x _ 2.70927
0.90309
x =3
The reason for these last rules may be understood by re-
ferring to the rules for Involution and Evolution ; for instance
:
862 = 7396, and this expressed by logarithms is:
2 X log. 86 = log. 7396.
Therefore: ^ *396
= 2.
log. 86
FRACTIONS.
The logarithm of a common fraction is found, either by first
reducing the fraction to a decimal fraction, or by taking the
logarithm of the numerator and the logarithm of the denominator
and subtracting the logarithm of the denominator from the log-
arithm of the numerator ; the difference is the logarithm of
the fraction.

<< prev. page << föreg. sida <<     >> nästa sida >> next page >>


Project Runeberg, Sun Jan 5 23:50:27 2025 (aronsson) (download) << Previous Next >>
https://runeberg.org/lobben/0100.html

Valid HTML 4.0! All our files are DRM-free