Full resolution (JPEG) - On this page / på denna sida - Geometry - Solution of oblique angle triangles
<< prev. page << föreg. sida << >> nästa sida >> next page >>
Below is the raw OCR text
from the above scanned image.
Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan.
Ser du något fel? Korrekturläs sidan nu!
This page has never been proofread. / Denna sida har aldrig korrekturlästs.
TRIGONOMETRY. 183
Example 12.
Find angles c and b and the length
of the side X \n Fig. 24.
Sin. c =
Sin. c =
42 X sin. 54°
35
42 X 0.80902
35
Sin. c ~ 0.9T082 r- is meiei
Angle c — 76° 7’ 26"
Angle £ = 180° — (54° 0’ 0" 4- 76° T 26") = 49° 52’ 34’
Side^T =
X =
35 X sin. 49° 52’ 34"
sin. 54°
35 X 0.76465
0.80901
= 33.08 meters long.
By means of logarithms the side X is solved thus :
Log. X = log. 35 4- log. sin. 49° 52’ 34" — log. sin. 54°.
Log.X= 1.544068 4- (9.883463—10) — (9.90795S—10).
Log.X= 1.519573
X = 33.08 meters long.
Note.—The angle c is obtained by interpolation thus : In
the table of trigonometrical functions the sine 0.97100 corre-
sponds to the angle 76° 10’ and the sine 0.97030 corresponds to
the angle 76°. Thus, a difference of 0.00070 in the sine gives
a difference of 10’ = 600" in the angle.
The sine to angle c is 0.97082
The nearest less sine in the table is 0.97030 corresponding
to angle 76° 0’ 0".
Difference, 0.00052
Therefore when an increase in sine of 0.00070 corresponds
to an increase of 600" in the angle, an increase of 0.00052 will
600 X 0.00052
= 446’ 0° 7’ 26’
increase the angle
0.00070
thus, the angle corresponding to the sine 0.97082 must be
76° 7’ 26".
<< prev. page << föreg. sida << >> nästa sida >> next page >>