- Project Runeberg -  Machinists' and Draftsmen's Handbook /
242

(1910) Author: Peder Lobben - Tema: Mechanical Engineering
Table of Contents / Innehåll | << Previous | Next >>
  Project Runeberg | Catalog | Recent Changes | Donate | Comments? |   

Full resolution (JPEG) - On this page / på denna sida - Strength of Materials - Formulas for calculating transverse strength of beams

scanned image

<< prev. page << föreg. sida <<     >> nästa sida >> next page >>


Below is the raw OCR text from the above scanned image. Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan. Ser du något fel? Korrekturläs sidan nu!

This page has never been proofread. / Denna sida har aldrig korrekturlästs.

242 STRENGTH OF MATERIALS.
HOLLOW ROUND BEAMS.
p _ 0.589 CX(D* — d*)
Z X D
SOLID ELLIPTICAL OR OVAL BEAMS.
p _ 0.589 C X Dx X D2
L
Fig. 19.
FIG. 20.
•\<b\
HOLLOW ELLIPTICAL OR OVAL BEAMS.
p _ 0.589 C (Pi X D* — dx X d*)
LD
I BEAMS.
As a general rule, wrought iron I beams
should always be selected of such size that their
depth is not less than one-twenty-fourth of the
span; and their strength may be calculated by the
formula
:
p = CX(B XH* —2d X h?)
LXH
In the preceding formulas
:
P = Breaking load when beam is fastened at one end and
loaded at the other.
L — Length of beam in feet.
C == Constant, and is the load in pounds which will break a
bar one inch square and one foot long when fastened at one
end and loaded at the other, and may be obtained from
Table No. 30.
These formulas give the breaking load when the beam is
fastened at one end and loaded at the other, but for other
fastenings and loads C must be multiplied by either 2, 4, 6, 8,
or 12, depending upon conditions. (See pages 239 and 240).

<< prev. page << föreg. sida <<     >> nästa sida >> next page >>


Project Runeberg, Sun Jan 5 23:50:27 2025 (aronsson) (download) << Previous Next >>
https://runeberg.org/lobben/0262.html

Valid HTML 4.0! All our files are DRM-free