Full resolution (JPEG) - On this page / på denna sida - Mechanics - Moment of inertia
<< prev. page << föreg. sida << >> nästa sida >> next page >>
Below is the raw OCR text
from the above scanned image.
Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan.
Ser du något fel? Korrekturläs sidan nu!
This page has never been proofread. / Denna sida har aldrig korrekturlästs.
296 MECHANICS.
FIG. 9.
SOLVING FOR CENTER OF GRAVITY :
(Area.) (Distance.)
Area of upper flange = 2 X 1 = 2 square inches X 5 =10
Area of web = 4 X 1 = 4 square inches X 2 l
/
2 = 10
Area of lower flange =4X1 = 4 square inches X =0
10 20
and 20 divided by 10 = 2’’ which is the distance from the center
of gravity of the lower flange to center of gravity of the section
of the beam, or the neutral axis x y.
SOLVING FOR MOMENT OF INERTIA :
« = 2x;4 X (3X)
2
= 10.56250
b = 2X yA X (2^)2
= 7.56250
c = \ X ,
<* X (2X)
2
= 2.53175
d=l X ,4 x(iX)2
= 1.53225
e = l X ,/2 x(iX)2
= 0.78125
/=ix;4 x ( U)2
= 0.28125
^=1 x )4 x ( X)
2
= 0.03125
h — 1 X ,* x ( X)
2
= 0.03125
z = l X ,
/
2 x ( %)
2
= 0.28125
; = ixj4 X(1X)2
= 0.78125
k = 4 X )4 X (IX)2
= 6.12500
/=4X,4 X (2X)
2
=
ia of beam =
10.12500
oment of inert 40.6266 (
Area of cross-section of beam = 10 square inches
Radius of gyration of beam = -\j
40.6266
10
2.015 inches.
<< prev. page << föreg. sida << >> nästa sida >> next page >>