- Project Runeberg -  Matematisk Tidsskrift / A. Aargang 1922 /
69

(1919-1922)
Table of Contents / Innehåll | << Previous | Next >>
  Project Runeberg | Catalog | Recent Changes | Donate | Comments? |   

Full resolution (TIFF) - On this page / på denna sida - Sidor ...

scanned image

<< prev. page << föreg. sida <<     >> nästa sida >> next page >>


Below is the raw OCR text from the above scanned image. Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan. Ser du något fel? Korrekturläs sidan nu!

This page has never been proofread. / Denna sida har aldrig korrekturlästs.

PANTOGRAFEN

69

han opnaar derved, at man kan tegne en Figur, som er
ligedannet med en given og drejet en vis Vinkel om et fast Punkt.
Denne saakaldte »skæve Pantograf« vil blive omtalt senere.

Ved at sammensætte flere saadanne Pantografer, kan man
faa et bevægelig System, bestaaende af Stænger og Polygoner,
saaledes at visse Punkter under Systemets Bevægelse bliver
Vinkelspidser i en Polygon med konstant Form. Eftersom
denne Polygon er en Trekant, Firkant» .., kan man tale om
Trekants-Pantografer, Firkants Pantografer . . ..

I det efterfølgende skal angives et bevægeligt System, som
dannes af Polygoner og indeholder de tidligere kendte
Pantografer.

3. De to Trekanter (Fig. i) A^B^C^-og A1A2AB, som er
ligedannede i den nævnte Orden, kan dreje sig om Hængslet

A±. Man tilføjer Stængerne (fastgjorte ved Hængsler) A2B2,
B^B^ A3CB og CBCV saaledes at Firkanterne A^A^B^B^ og
A±AB C3 C± begge bliver Parallelogrammer. Det kan da bevises,
at den bevægelige Trekant A1B3C3 bliver ligedannet med
Trekant A^B^C^.

De to Parallelogrammer bliver ligedannede, da

hvoraf følger, at
og da saaledes

og
er

1 . -"i ^^3 - -^i l ’ J^-\ 2

± C3 :

<< prev. page << föreg. sida <<     >> nästa sida >> next page >>


Project Runeberg, Sun Dec 10 16:31:09 2023 (aronsson) (download) << Previous Next >>
https://runeberg.org/matetids/1922a/0075.html

Valid HTML 4.0! All our files are DRM-free