Full resolution (TIFF) - On this page / på denna sida - Sidor ...
<< prev. page << föreg. sida << >> nästa sida >> next page >>
Below is the raw OCR text
from the above scanned image.
Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan.
Ser du något fel? Korrekturläs sidan nu!
This page has never been proofread. / Denna sida har aldrig korrekturlästs.
72
Thus
G. H. HARDY:
T (s) sin i sn (i - 2~1-s) £ (i + s).
Writing s instead of i -j- s, we obtain the ordinary form of
the functional equation, viz.
cos i sn T
(3)
2. It remains to justity the inversion of summation and
integration implied in (2). The series (i) is boundedly
convergent ; that is to say, there is a constant K such that
V7 si
\]x
2m
for all values of x and n\ and xs~l> where o< J< I, is
inte-grable over any finite range (ö, X). We have therefore
(4)
Also
= Urn
/e^’
\
J
lim
= lim
(5)
provided only that the last series is convergent and
Hm
= ö.
(6)
But
, - ~
(2m -\-
––– \ ^s- i sjn /2^ -I-
2m + i JY v
Ys-1cos(2m+i)Y+(s~i)\
j
<< prev. page << föreg. sida << >> nästa sida >> next page >>