Full resolution (TIFF) - On this page / på denna sida - Sidor ...
<< prev. page << föreg. sida << >> nästa sida >> next page >>
Below is the raw OCR text
from the above scanned image.
Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan.
Ser du något fel? Korrekturläs sidan nu!
This page has never been proofread. / Denna sida har aldrig korrekturlästs.
G. H. HARDY: A NEW PROOF FOR THE ZETA-FUNCTION. Ji
A new proof of the functional equation for the
Zeta-function.
By G. H. Hardy.
I. It is well known that
oc
X /
2,
!)*.*. X ’si n l
4 ,"="
if kiK^x<^(k-\-\]n. If we multiply (i) by xs~l, where Ö < .y < i,
and integrate over the interval (ö, oo), assuming for the moment
that we way invert the order of integration and summation,
we obtain
(2)
4 -^ J ^-/ 2;w+i ,1
/;=() to m=0 o
1 V, w C
JT > - IH
4 -A J
\T7
F (j) sin -J- sn y
or
say. This equation, proved in the first instance when o<><O,
will hold, when considered as a relation between analytic
functions, over any region throughout which these functions
exist.
The series for Ö (A viz.
/f=0
is convergent if only d - H (s) < i. When ö << - i, it is equal to
^l+S jjl+*
’____ ( js___ 2s . j ^s__. . . . \ - -._ (j__21^’s) 2! fj")"
and it effects the analytic continuation of this function for
o<C I. The series for W (j), on the other hand, is convergent
when ö > ö, and equal to
6*
<< prev. page << föreg. sida << >> nästa sida >> next page >>