- Project Runeberg -  Den Norske Nordhavs-expedition 1876-1878 / The Norwegian North-Atlantic Expedition 1876-1878 / 2. Bind /
147

(1880-1901) [MARC]
Table of Contents / Innehåll | << Previous | Next >>
  Project Runeberg | Catalog | Recent Changes | Donate | Comments? |   

Full resolution (JPEG) - On this page / på denna sida - Sidor ...

scanned image

<< prev. page << föreg. sida <<     >> nästa sida >> next page >>


Below is the raw OCR text from the above scanned image. Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan. Ser du något fel? Korrekturläs sidan nu!

This page has never been proofread. / Denna sida har aldrig korrekturlästs.

147

at være 43.6 Milliontedele. Herefter faar man

ilU = (43.6 + 2.7825 -f 0.0962) 10-° = 46.4787 X 10~«.

.1. Y. Buchanan, Challenger-Expeditionens Cliemiker,
har fundet, at Søvandets Coefficient er 92.3 Procent af det
rene Vands. Da dette kan sættes1 til 50.153x 10-" ved
0° og almindeligt Lufttryk, faaes heraf r,„= 50.153 X0.923 X
10 -« = 46.291 x 10-«.

Tait2 har fundet den samme Procent at være 92.5,
hvoraf = 46.392 x 10-".

Middel af disse Bestemmelser er 46.387 X 10-".

Den følgende lille Tabel giver en Oversigt over
Størrelsen af Factoren tt i Formelen for p Paa næste Side i
Milliontedele, ved forskjellige forekommende Temperaturer
og Tryk.

gravity of 1.02(54, to be 43.6 millionths. According to this
result we get

ij„ = (43.6 -f 2.7825 4 0.0962) HM = 46.4787 X 10-«.
Mr. J. Y. Buchanan, Chemist to the Challenger
Expedition, found the coefficient of sea-water to be 92.3 per
cent compared to that for pure. Now as this may be
put1 = 50.153 X 10"« at 0° and ordinary atmospheric
pressure, we get tj„ = 50.153 X 0.923 X 1»»-« = 46.291 x 10-«.

Tait2 has found the same percentage to be 92.5,
whence »,„ = 46.392 X 10-«.

The mean of these determinations is 46.387 X 10—1I
The following short Table will give a general view
of the value of the factor t] in the formula for p, next page,
in millionths, at different actual temperatures and pressures.

Dybde i Favne. i

(Depth in Fathom*. I

o 5".o 0"’ 45-5«
0 0 .0 0 46.39
416 2 .0 75968 45-74
1333 -0.7 244.482 45-43
1985 ’ -7 365.008 45-03

/( vil saaledes falde mellem 45 og 46 Milliontedele.
I mine Beregninger har jeg antaget /( constant lig 45 X 10 -«.

Den heraf flydende Fejl har, som senere skal vises,
ingen stor Indflydelse paa det beregnede Trvk. end mindre
paa Tryk-Forskjeller i samme Dybde-Niveau.

Er i Dybden h Favne Trykket af det overliggende
Vand p Atmosfærer, og er Søvandets Tæthed, ved alminde-

8o

I ,p-

Det Tryk, dp. som en vertical Vandsøjle af Hojden d h
udøver ved sin Gravitation, ei- proportionalt med Tyngdens
Størrelse. Man faar saaledes

ligt Lufttryk. S„. saa er dets Tæthed, i Dybden h.

Thus >! will vary between 45 and 46 millionths. In
my computations, 1 have regarded rj as constant, and equal
to 45 X 10-«.

The errors arising therefrom have, as will subsequently
be shown, no considerable influence on the computed
pressure, and far less on differences of pressure throughout the
same level.

If, at the depth h fathoms, the pressure of the
superincumbent water is p atmospheres, and if the density
of the sea-water at ordinary atmospheric pressure is S„.

then its density at the depth h will be ^ ~~~p’ Pres~

sure, dp, which a vertical column of water of the height
d h exerts by its gravitation, is proportional to the force
of gravity. Hence we get

V dh03*z
I —ijP <74.-.

’ 1-

’iP

(1 —ß eos 2 if) (1 + b.h) dh.

For at kunne integrere denne Ligning maatte man
kjende den Lov, hvorefter Tætheden S„ varierer med
Dybden. Som Snittene Pl. XXXIX til XLI vise, er denne
forskjellig i de forskjellige Verticallinier. Forskjellerne ere
imidlertid ikke store, og saavel numeriske Beregninger som
theoretiske Betragtninger, hvis Resultat senerehen skal
meddeles, vise, at man kommer til den ønskede
Nøjagtighed, om man regner med en constant Værdi af Vandets
Tæthed og sætter denne lig Middeltallet af Tæthederne i de

In order to integrate this equation, it is necessary to
know the law according to which the density S„ varies
with the depth. As shown by the sections Pl. XXXIX
to Pl. XLI, this differs along the different vertical lines. The
differences however are not considerable, and alike numerical
computations and theoretical considerations, the result of
which will be subsequently given, clearly prove that the
desired accuracy is reached, if we calculate with a constant
value for the density of the water and put the latter

1 Travaux et mémoires du bureau international des poids et.
mesures, Tome II, D.

- Proceedings of the Royal Society Edinburgh. I88:i. S. 224.

1 Travaux et. mémoires du bureau international des poids et
mesures, Tome II, D. HO.

2 Proceedings of the Royal Society Edinburgh, 18815, p. 224.

Ill*

<< prev. page << föreg. sida <<     >> nästa sida >> next page >>


Project Runeberg, Sun Dec 10 20:01:49 2023 (aronsson) (download) << Previous Next >>
https://runeberg.org/nordhavexp/2/0331.html

Valid HTML 4.0! All our files are DRM-free