Full resolution (JPEG) - On this page / på denna sida - Geometry - Solution of oblique angle triangles
<< prev. page << föreg. sida << >> nästa sida >> next page >>
Below is the raw OCR text
from the above scanned image.
Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan.
Ser du något fel? Korrekturläs sidan nu!
This page has never been proofread. / Denna sida har aldrig korrekturlästs.
178 TRIGONOMETRY.
Solution of Oblique=Angled Triangles.
Fig. 20.
Oblique-angled triangles
A (see Figs. 20-21-22) may be solved
by the following formulas
:
Solving for Any Side.
C sin. a B sin. a I
n „,_ ^ _
A = — =—
—
T = -\ B 2
+ C1 — 2 B Ccos. a
Z? =
C =
sm c
C sin. £
in. ^
A sin. 3
sin. £•
A sin. <r
sm. a
B sin. c
Jc* + A*—’2A Ccos.i
sin. ^
Solving for Any Angle.
Cos. # =
. , A A
Sin. a — sm. b —– — sin. ^ —
-
B B
Sin. £ = sin. c -_ = sin. # —
-
c -^
Sin. c = sm. <z —- = sin. £ —
= 180° — (£ + *•)
^ = 180° — {a + b)
b = 180° — {a + c)
Cos. £ =
Cos. c =
2 ^4 B cos. £
^ + C* — ^2
^2 4- C2 ^2
2.4 C
A2
+ £ 2 -
2.4 B
Area
Solving for Area.
sin. c X A X B _ sin. a X C X B _ sin. £ X .4 X C
2 2 2
Example 1.
Find the length of the side C (see Fig. 20) when angle a =
20° 38’ 12", angle <r = 117° 48’ 5", and side A = 12.75 feet long.
v
Note.—The angle c exceeds 90°, therefore the supplement
of the angle must be used, which is 180° — 117° 48’ 5"’ =
62° 11’ 55".
<< prev. page << föreg. sida << >> nästa sida >> next page >>