- Project Runeberg -  Machinists' and Draftsmen's Handbook /
179

(1910) Author: Peder Lobben - Tema: Mechanical Engineering
Table of Contents / Innehåll | << Previous | Next >>
  Project Runeberg | Catalog | Recent Changes | Donate | Comments? |   

Full resolution (JPEG) - On this page / på denna sida - Geometry - Solution of oblique angle triangles

scanned image

<< prev. page << föreg. sida <<     >> nästa sida >> next page >>


Below is the raw OCR text from the above scanned image. Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan. Ser du något fel? Korrekturläs sidan nu!

This page has never been proofread. / Denna sida har aldrig korrekturlästs.

TRIGONOMETRY. 1 79
Thus the solution
:
c _ 12.75 X sin. 62° 11’ 55"
sin. 20° 38’ 12"
r _ 12.75 X 0.88456 e ,
6
~ ’
035243 ’
= 32 feet lon^-
Example 2.
Find the length of the side B (see Fig. 20) when angle b
is 41° 33’ 43", side C is 32 feet and side A is 12.75 feet.
In this example two sides and their included angle are
given and the third side is required ; therefore the formula
B = \/A2
+ C2 — 2A C cos. b must be used.
Solution
:
B = \/l2.752
+ 322 — 2 X 12.75 X 32 X 0.748238
B = Vl186.562 — 610.562 = \^hlQ = 24 feet long.
Example 3.
Find the length of the side B when side A is 12.75 feet
long, angle b is 41° 33’ 43" and angle c is 117° 48’ 5’ . ( See
Fig. 20).
In this problem one side and its two adjacent angles are
given; therefore it can not be solved directly by any of the
preceding formulas, but the first thing to do is to find the angle
opposite to side A.
Thus: Angle a = 180° — (41° 33’ 43" + 117° 48’ 5") =
20° 38’ 12". The side B may be found by the formula
A sin, b
h — sin. a
Solution
:
B _ A sin. 41° 33’ 43" _ 12.75 X 0.66343
sin. 20° 38’ 12" 0.35242 = 24 ieet l°ng-
Example 4.
Find length of the side C when B is 24 feet long, angle c is
117° 48’ 5" and the side A is 12.75 feet long. ( See Fig. 20).
Solution
:
C = VA2
+ B1 — 2 A B cos. c
C= Vl2.752
+ 242 — 2 X 12.75 X 24 X (— 0.4664)
C = Vl62.56 +1>76 + 285.44
C = Vl024 = 32 feet long.
Note.—In this example the cos. of 117° 48’ 5" is used,
which, in numerical value, is equal to cos. of 62° 11’ 55" =
0.4664, but cos. in the second quadrant is negative (see page 154);
therefore cos. 117° 48;
5" = ( — 0.46645) and the essential sign
of the last product after it is multiplied by this negative cos.
must change from — to +. ( See Algebra, page 63).

<< prev. page << föreg. sida <<     >> nästa sida >> next page >>


Project Runeberg, Sun Jan 5 23:50:27 2025 (aronsson) (download) << Previous Next >>
https://runeberg.org/lobben/0199.html

Valid HTML 4.0! All our files are DRM-free