Full resolution (JPEG) - On this page / på denna sida - Sidor ...
<< prev. page << föreg. sida << >> nästa sida >> next page >>
Below is the raw OCR text
from the above scanned image.
Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan.
Ser du något fel? Korrekturläs sidan nu!
This page has never been proofread. / Denna sida har aldrig korrekturlästs.
Elektroteknik
att osäkerheten är stor vid val av förutsättningar för
beräkningen.
Även om man småningom skulle komma så långt som
att kunna bestämma strömbrantheten i blixten
någorlunda noga, så utgör jordarternas
ström-spännings-hysteresis ett ännu alltför outforskat gebit för att
medgiva några säkra beräkningar. Man får tills
vidare nöja sig med Grünewalds förklaring att vid linjerna
för de högsta spänningarna (över ca 70 kV) den
gamla å första spalten lämnade regeln ännu gäller
någorlunda. Strömbrantheten synes således icke vara
tillräckligt stor för att göra sig gällande annat än vid
linjer för måttlig och relativt låg spänning.
En lärdom synes man kunna draga av teoriens
resultat. Man bör söka hålla det resulterande
vågmotståndet lågt, ty ett lågt vågmotstånd verkar
utan fördröjning nedsättande på spänningen. Om
t. e. en portalstolpe av trä har två jordlinor
utgående åt vardera hållet och förlagda på trätoppar, så
bör man redan i stolptoppen förena jordlinorna med
varandra medelst en tvärgående ledare mellan
topparna. Varje förgrening på jordlinesystemet minskar
nämligen vågmotståndet och är därför gynnsam. Av
samma skäl bör man hava åtminstone två
nedled-ningar till jordningen, en utefter vardera stolpbenet,
och, om stag finnas, böra även de utbildas till
ned-ledningar genom att de i nedre änden förenas med
stolp jordningen. Utgöres stolpjorden av i marken
nedgrävda markledare, böra helst flera sådana utgå
strålformigt från vardera stolpbenet.
Endast mycket viktiga linjer bruka i vårt land
förses med jordlinor utefter hela sträckan. Denna
återhållsamhet är så mycket starkare motiverad, som
i belysning av det ovan sagda det synes vara nästan
hopplöst att göra ett jordlineskydd verkligt effektivt
vid blixtnedslag på linjer för medelmåttig spänning
(dock minskar jordlinorna antalet störningar genom
inducerade överspänningar). Däremot har det varit
vanligt att även på sådana linjer lägga upp
jordlinor på en eller annan km närmast stationerna, s. k.
inledningsskydd. När det gäller inledningsskydden
behöver man emellertid icke taga det pessimistiska
resultatet alltför allvarligt. Visserligen blir det, vid
linjer för lägre spänningar, svårt att undgå överslag
till faslinorna vid ett nedslag på inledningsskyddets
jordlinor. Men dessa fullgöra dock sin viktigaste
funktion, nämligen att avleda huvuddelen av
blixtladdningen till jord redan vid nedslagsstället, så att
stationens kondensatorer och ventilavledare
härigenom få en betydligt försvagad laddningsvåg att taga
hand om.
Det kan ju icke hjälpas att den nya teorien något
rubbar förutsättningarna för beräkningen av ett
jord-lineskydds skyddsverkan, förutsättningar som man
.förut ansett vara ganska klarlagda. Det är dock
författarens förhoppning att min något vågade teori
likväl skall i viss mån öka våra möjligheter att, även
kvantitativt, rätt bedöma åskans verkningar på våra
kraftnät.
Appendix.
Approximativ beräkning av vågmotståndet i blixtbanan.
Självinduktionen.
Vi tänka oss blixtbanan utgöras av en lodrät cylindrisk
ledare med diametern d cm och längden X cm (fig. 8).
Självinduktionen för ett sådant rakt ledarestycke
beräknas till
2 X
2 X (logn
m
1) e. m. enheter
Här betyder m ledaretvärmittens medelavstånd från
sig själv. För en cirkelyta är
m = 0,7788 • radien — 0,3894 d
I molnet och i jorden gå strömbanorna i stort sett
vinkelrätt emot blixtbanan och verka därför ej
inducerande på denna. Det gör däremot kapacitetsströmmen
v////////;//;/;///;///////////.
Fig. 8.
mellan moln och jord. Vi kunna antaga, att denna
ströms harmoniska medelavstånd från blixtbanan
är =0,6 l. Kapacitetsströmmen minskar då
självinduktionen i strömbanan med beloppet
^ — = e. m. enheter
0,6 X 0,6
Totala självinduktionen för blixtbanan mellan moln
och jord blir alltså
X
2 A (logn— — 1)-
m ’
0,6
e. m. enheter
och självinduktionen per längdenhet
1 — 2 (logn
2 X
D-^e.m./cm
Väljes i stället enheterna «H och km få vi multiplicera
med 10-9 • 105 • 108 = 102, alltså
eller
1 = 200 (log» - - -
1)-m
2X
167 ^H/km
l = 460 • log,o––-367 jttH/km
m
I nedanstående tabell beräknas l för ett antaget värde
i X = 0,7 km.
[-Blixt-kärnans-]
{+Blixt- kärnans+} area cm1 [-Kärn-diam.-] {+Kärn- diam.+} cm m cm 2>. m 2;- 460•logi o l ull/km
2 1,596 0,622 225 000 5,3522 2 463 2 096
1 1,128 0,439 318 300 5,5028 2 531 2164
0,5 0,798 0,311 450 000 5,6532 2 600 2 233
0,25 0,564 0,220 636 600 5,8039 2 686 2 319
I medeltal är
Z ssä 2 200 fi H/km
På den del av blixtbanan, som ligger närmast jord,
vilken närmast intresserar oss, är dock l något lägre,
varför i det följande räknas med
l = 2 000 juH/km
Vågmotståndet.
Vid metallisk ledare utan koronabildning är enligt en
känd lag vågens fortplantningshastighet = ljusets
hastighet.
. •. = 0,3 km/ms
\Jl c
där c är kapaciteten per längdenhet (uF/km).
1 febr. 1941
27
<< prev. page << föreg. sida << >> nästa sida >> next page >>