Full resolution (JPEG) - On this page / på denna sida - H. 22. 29 maj 1956 - Statistiska frågor i funktionssäkerhetsanalysen, av Rolf Moore
<< prev. page << föreg. sida << >> nästa sida >> next page >>
Below is the raw OCR text
from the above scanned image.
Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan.
Ser du något fel? Korrekturläs sidan nu!
This page has never been proofread. / Denna sida har aldrig korrekturlästs.
538
•TEKNISK TIDSKRIFT
Fig. A. Jämförelse mellan de sätt på vilka två stympade
normalfördelningar a och b, med olika spridning i
förhållande till toleransgränserna, glider utanför dessa
gränser; eu och Eö år toleranser vid tillverkningen, zud och
£öd är lämpliga toleranser vid drift, A är glidning och k
kassation.
man emellertid en viss spridning i värdet på
tiden till fel. Detta kan åskådliggöras med en
s.k. felfrekvenskurva.
Om en apparats funktionssäkerhet väsentligen
beror på några få, likartade vitala felförlopp
med liten spridning, säger man att ett typiskt
utmattningsfall föreligger. Felfrekvenskurvan
(fi {t) för typiska utmattningsfel, fig. 2 a,
karakteriseras av att värdena på tid till fel ligger väl
samlade som en symmetrisk puckel kring
medelvärdet tm. Sannolikheten för fel inom
tidselementet dt vid tiden t anges av det streckade
ytele-mentet (p(t)-dt, och är alltså proportionell mot
<fi(t). Fördelningen är med god noggrannhet en
normalfördelning kring medelvärdet tm och med
spridningen o.
Man kan också uppgöra motsvarande
"kumula-tiva" (integrerade) fördelningskurva för
tiden från tillverkning till fel, fig. 2 b. För visst
£-värde anger här $(t) hur stor andel av en
enhetlig serie apparater som fram till denna
tidpunkt blivit obrukbar. För små f-värden är
denna andel praktiskt taget noll, för stora värden
är den praktiskt taget lika med 1, dvs. efter en
lång tid från tillverkningen har alla apparater i
serien blivit obrukbara. Eftersom utgör in-
tegralkurvan till <fi(t) innebär detta att totala
ytan (sannolikhetsmassan) under (fi(t) är lika
med 1.
Apparater med olika noggrann montering eller
med olika kvalitet på komponenterna kommer
att ge olika läge och bredd hos "puckeln" och
om de blandas ger de tillsammans en
normalfördelning som är iner förskjuten till vänster och
avsevärt mer breddad. Den ojämna
tillverkningen ger sig alltså tillkänna i minskat
medelvärde tm och ökad standardavvikelse o.
Slumpmässiga fel
Många fel uppstår på så sätt att ett
nedbrytningsförlopp i sig självt ej hinner leda till fel
men försvagar en detalj, t.ex. en glödtråd i ett
elektronrör, så mycket att fel uppstår så snart
en mekanisk eller elektrisk påkänning av viss
storlek inom det tillåtna området råkar uppstå.
Detaljen kan också redan från början vara
försvagad, t.ex. genom en brottanvisning av något
slag. Beroende på graden av begynnelsesvaghet,
hastigheten hos nedbrytningsprocessen och det
mönster av påfrestningar apparaten utsättes för,
kommer fel av denna art att kunna inträffa när
som helst, dvs. de uppträder slumpmässigt i
tiden i stället för att vara koncentrerade kring ett
medelvärde. Man säger att konstant momentan
felrisk råder. På grund av det successiva
bortfallet av sådana enheter som blivit felaktiga
erhålles en exponentiellt fallande felfrekvens och
därmed exponentiell sannolikhetsfördelning av
tid till fel, fig. 3 a. Även motsvarande kumulativa
kurva är, ehuru stigande, av exponentiell typ,
fig. 3 b. Är bortfallet genom fel lågt blir
felfrekvenskurvan under lång tid tillnärmelsevis en
horisontell linje.
För att nedbringa antalet slumpmässiga fel så
mycket att fel sällan inträffar under drifttiden,
blir man tvungen att göra många detaljer
överstarka, så att deras egentliga utmattningstid blir
många gånger den önskade, felfria drifttiden. I
själva verket är ofta de slumpmässiga felen så
vanliga, att den puckel på frekvenskurvan, som
skulle uppstå vid den genomsnittliga egentliga
utmattningstiden, i många fall knappt blir
märkbar.
Mera utpräglade svagheter i komponenter eller
montering ger vanligen upphov till fel redan i
början av en apparats drifttid. Därigenom
försvinner sådana apparater efter en ganska kort
tid, varefter felfrekvensen hos en enhetlig serie
välkonstruerade apparater länge håller sig låg
och tämligen konstant, tydande på i tiden
slumpmässigt fördelade fel. Härefter börjar den
egentliga utmattningen inverka och man får en
stigande felfrekvens. Dessförinnan bör apparaterna
tas ur drift.
Tidsfaktorn vid gradvisa fel
Den frekvenskurva efter vilken de numeriska
värdena på en viss egenskap hos en komponent
eller apparat från början är fördelade förflyttar
sig ofta med tiden i sidled och breddas. Trots att
man från början sorterat bort exemplar med
värden utanför toleransgränserna, kommer efter
glidningen värdena på vissa exemplar att ligga
utanför dem, fig. 4. Av den smala, lindrigt
stympade fördelningen a glider en betydligt mindre
del ut till kassation k än av den bredare och mer
stympade fördelningen b för samma
förskjutning A. Proportionsvis fler apparater blir alltså
funktionsodugliga i det senare fallet och deras
funktionssäkerhet faller alltså snabbare med
tiden. Ett sätt att länge bibehålla hög
funktionssäkerhet är därför att söka hålla så låg spridning
vid tillverkningen, att endast ett fåtal individer
<< prev. page << föreg. sida << >> nästa sida >> next page >>