Full resolution (JPEG) - On this page / på denna sida - Sidor ...
<< prev. page << föreg. sida << >> nästa sida >> next page >>
Below is the raw OCR text
from the above scanned image.
Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan.
Ser du något fel? Korrekturläs sidan nu!
This page has never been proofread. / Denna sida har aldrig korrekturlästs.
Ex. 18. Hvad är a) 3 gänger 4 X 2|?
19. Hura stor är hvarje del, dä ) 0,998 delas i 5 lika delar, b)
delas i 14 lika delar?
* Se äfven ex. 3, 4 och 5 här ofvan!
Större svårighet yppar sig väl i addition och subtraktion i
allmänna bråk, då de gifna bråken icke äro liknämniga. Men
om de då förekommande bråken äro mycket enkla, och
inledningen för klargörande af bråkens beskaffenhet genomgåtts or-
dentligt, så fatta barnen snart nog de betingelser, som fordras
för att lösa äfven dylika uppgifter.
De svåraste exemplen äro ex. sådana som 6, 7, 8 c), 8 d)
och 9 här ofvan.
Lösningen af ex. 6 kan utföras enligt läran om hela tal
och innehåller 2 delar: 1) beräkning af priset för 1 dm.; 2)
beräkning af priset för 3 dm. Det förra är 1 tiondedel af 4 kr.
eller 40 öre; det senare är 3 gånger 40 öre eller 1 kr. 20 öre.
Svaret på exemplets fråga betecknas då 3 X Eller ock
betecknas svaret så som förut skett, då bråket 0,3 användes.
Äfven då består uträkningen af 2 delar. — Likaså består
lösningen af ex. 7, 8 c), 8 d) och 9 af 2 delar. — I 8 c) och 8 d)
böra talen uttryckas i samma talsort, såsom fallet är i
motsvarande exempel i hela tal. 1 denna kursens alla divisionsexempel
torde det vara enklast att göra de gifna talen liknämniga. Sedan
det skett, behöfver man blott fästa uppmärksamheten på de
liknämniga talens antal.
Ex. 20. f:± = f:$ = 3:2.
21. 2,4:0,18 = 2,40:0,12 = 240:12.
Af ålder har läran om allmänna bråk inrymt decimalbråken.
Men efter decimalsortsystemets införande har läran om
decimalbråk (läran om decimaler) skilts från den öfriga delen af
bråkläran och bildat en afdelning för sig i de flesta af (kanske alla)
landets folkskolor. Denna decimalbråkafdelning behandlas på
de flesta ställen före afdelningen om allmänna bråk af skäl, som
äro bekanta för hvarje lärare. Här må dock sägas, att en
afdelning af allmänna bråk försvarar sin plats före decimalbråken,
om den afdelningen hålles inom tillbörliga gränser, d. v. s. upp-
<< prev. page << föreg. sida << >> nästa sida >> next page >>