- Project Runeberg -  Teknisk Tidskrift / 1940. Allmänna avdelningen /
37

(1871-1962)
Table of Contents / Innehåll | << Previous | Next >>
  Project Runeberg | Catalog | Recent Changes | Donate | Comments? |   

Full resolution (JPEG) - On this page / på denna sida - Häfte 5. 3 febr. 1940 - Knacknings- och bucklingsföreskrifter för byggnadsstål, av Karl Ljungberg

scanned image

<< prev. page << föreg. sida <<     >> nästa sida >> next page >>


Below is the raw OCR text from the above scanned image. Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan. Ser du något fel? Korrekturläs sidan nu!

This page has never been proofread. / Denna sida har aldrig korrekturlästs.

Teknisk tidskrfft

eller a <os eller egentligen a < aP eller
proportio-nalitetsgränsen skulle godtaga en mindre säkerhet
vid stor slankhet än vid liten slankhet hos strävan.
Vidfogade tabell 1 visar den "ideala
knäcknings-spänningen" samt "bärlastspänningen" för de båda
materialierna St. 37 och St. 52 enligt det tyska
förslaget. Fig. 1 visar variationen av
knäcknings-säkerheten räknad från den ideala
knäckningsspän-ningen jämförd med bärlastspänningen samt
reducerad till 2-faldig säkerhet vid 1 = 0. Området intill
övergången mellan de båda oKi -kurvorna kan man
frånse, då diskontinuiteten här beror på, att den
utjämning, som finnes vid övergången hos den verkliga
knäckningskurvan, helt uteslutits. Kurvorna för
säkerheten visa emellertid, att den tillåtna säkerheten
för knäckningsområdet

ji

°Ki =



skulle minska med ökad slankhet samt att man
till-låter mindre knäekningssäkerhet för St. 52 än för
St. 37, trots att man antagit samma värde å E —
= 2 100 000 kg/cm2.

I de föreslagna normerna liar denna olikhet
uppkommit därav, att problemet genom den antagna stora
excentriciteten övergått från ett knäckningsproblem
till ett böjningsproblem. Vid ett böjningsproblem är
det klart att man erhåller större värde å
brottbelastningen vid större värden å flytgränsen och sålunda å
tillåtna böjningsspänningen.

Då man sålunda vid böjning genom excentrisk last
jämför en böjningsbrottbelastning med en
knäck-ningsbelastning, som icke är beroende av flytgränsen
utan endast av elasticitetmodulen, framkommer
nyssnämnda olikhet mellan St. 37 och St. 52. Egentligen
skulle skillnaden varit större, om man icke helt
godtyckligt antagit mindre excentricitet för St. 37 än för
St. 52.

Så länge man i normerna icke tagit hänsyn till
plasticiteten för det vanliga böjningsproblemet, bör
man icke taga dylik hänsyn för detta speciella
böjningsproblem.

Dessutom vill jag framhålla, att man i detta
problem får bättre överensstämmelse mellan försöken,
även enligt Ohwalla, och beräkningar än vid de rena
böjningsproblemen. Vid dylika beräkningar får man
emellertid icke använda den felaktiga formeln för
tryck och böjning

P M

utan måste använda den exakta formeln
P a M

°~Ä + W

där a M är det verkliga böjningsmomentet, dvs. med
riktig hänsyn till normalkraften P gånger
utböjningen. Beträffande koefficienten a kan hänvisas till
1931 års svenska normer eller till prof. Dischingers
uppsatser i Der Bauingenieur 1937 och 1938. För
övrigt hänvisas till undertecknads hållfasthetslära och
artiklar i Teknisk tidskrift VV 1939, sid. 17 samt Der
Bauingenieur 1939, h. 25/26.

Man beräknar ur formel (2) den last P =a0 ■ A,
som ger en kantspänning amaj! — as= flyt- eller
stuk-gränsen under antagande, att E är konstant för
spänningar upp till detta värde.

wà-J/J

Fig-, 1. n = säkerheten.

I formeln införes

M = P ■ a

a = c(m)2’k

w

k = —, a — 0,75 eller 0,95 samt
A

ß R
= i + „ 1 - = i +

— i

n2 E

Vid rak sträva med excentrisk last är koefficienten
ß r= 1,234. Vid på olika sätt krökt sträva med en
ex-’ centricitet ci varierar ß från 0,822 till 1,0. Vid
insättning i formeln erhålles en andra grads ekvation med
avseende på o0. Denna ekvation ger nästan samma
värden på a0 som de föreslagna tyska normerna
infört för bärlastspänningen ok.

Denna beräkning visar sålunda, som ovan anförts,
att man i detta problem har mindre behov av att
taga hänsyn till plasticiteten än i det vanliga
böjningsproblemet.

En helt annan skillnad från det vanliga
böjningsproblemet framkommer emellertid ur dessa
beräkningar. Vid excentriskt tryck växer kantspänningen
icke proportionellt mot belastningen P utan tilltager
hastigare. Särskilt sker ökningen mycket hastigt, då
kraften närmar sig knäckningslasten,

JI2E ■ I

Ju mindre excentriciteten är, dess hastigare sker
ökningen och därför finnes ingen reservsäkerhet, då
kantspänningen är=<Js eller medelspänningen o0 =

PE "

= aE = —Vid enkla böjningsproblemet växer

kantspänningen proportionellt mot belastningen, så
länge spänningarna i hela snittet hålla sig under
sträckgränsen. Sedan sträckgränsen uppnåtts, kan
kraften ökas betydligt, utan att verkligt brott
uppstår, dvs. det finnes en stor reservsäkerhet sedan
sträckgränsen vid kanten uppnåtts. Man bör därför

37

<< prev. page << föreg. sida <<     >> nästa sida >> next page >>


Project Runeberg, Fri Oct 18 15:37:41 2024 (aronsson) (download) << Previous Next >>
https://runeberg.org/tektid/1940a/0051.html

Valid HTML 4.0! All our files are DRM-free