Full resolution (JPEG) - On this page / på denna sida - H. 21. 27 maj 1944 - Beräkning av tryckta strävor av furuvirke med hänsyn till virkets kvalitet, av Bertil Thunell
<< prev. page << föreg. sida << >> nästa sida >> next page >>
Below is the raw OCR text
from the above scanned image.
Do you see an error? Proofread the page now!
Här nedan syns maskintolkade texten från faksimilbilden ovan.
Ser du något fel? Korrekturläs sidan nu!
This page has never been proofread. / Denna sida har aldrig korrekturlästs.
644
TEKNISK TIDSKRIFT
För en rund kvist, vars storlek är 1 resp.
1,5" i bredd och höjdled och som sitter i en 2"
sida, är alltså ekvivalenta kvistdiametern d <=
= V 1 -f- 1,5^= 1,22 och kvistkvoten k<= 0,61. Vid
samma kvistkvot bli alltså kvistarna större i en
flatsida än i en kantsida, men det har i praktiken
visat sig riktigt att tillåta detta. Eventuellt kan
förhållandet förklaras därigenom, att en
inkaps-ling av kvistarna i rätfibrigt material sker bättre i
flatsidan.
Med hänsyn till att kvistarna många gånger
förekomma i grupper, har det varit nödvändigt att
vid uppställandet av en eventuell klassindelning
med avseende på kvistarna ta hänsyn till detta.
Experimentella erfarenheter ha även visat, att
brott äger rum i de avsnitt, som innehålla den
farligaste kvistgruppen eller grupperna. Ligga
kvistarna nära varandra inträffar i synnerhet på
grövre dimensioner ofta, att brottet först förlöper
i ett kvistvarv åt en sida, för att på den motsatta
sidan ske i ett närbeläget kvistvarv. Inverkan av
kvistgruppen är därför i hög grad beroende på
tvärsnittets storlek. För att ta hänsyn till
kvistgruppen ha därför kvistkvoterna adderats på
längden lika med tre gånger minsta
tvärsnittssidan. Det därvid erhållna talet har benämnts
kvistkvotssumma eller kvistsumma och har
betecknats k3. På försök ha beräkningar även
utförts, t.ex. med maximalkvistens kvot som
betecknande kvantitet, men därvid har emellertid det
beräknade medelfelet hos hållfasthetsvärdena
blivit avsevärt större.
Vid slankhetstal, för vilka brotten bli tryckbrott
med krossningar, spelar kvistens läge utefter
längden ingen roll. Vid större slankhetstal blir
inverkan av maximala kvistkvotssumman störst,
om den är förlagd till mitten av knäcklängden.
Skillnaderna bli i praktiken emellertid mycket
små, främst beroende på att den maximala
kvistkvotssumman, som normalt bestämmes av ett
kvistvarv, i regel åtföljes av i stort sett
angränsande likartade kvistvarv. Det kan därför anses
motiverat att åsidosätta läget av maximala
kvistkvotssumman utefter längden, i synnerhet som en
virkessortering icke vore möjlig att genomföra
med hänsyn härtill.
Resultatens bearbetning
Vid hållfasthetsprovningen erhölls
maximalbelastningen Pk direkt. Det är emellertid av intresse
att även känna den belastning vid vilken
"någonting börjar hända" med virket. Detta kan antingen
för kortare provkroppar yttra sig däri, att
materialet fortsätter att deformeras vid konstant
belastning, eller vid längre provkroppar, att
utböjningen hastigt stiger, utan att sedan ånyo avta,
eller att betydande avvikelser från den rätlinjiga
kraft-deformationskurvan inträda. Genom den
försöksmetodik som använts har det varit möjligt
att bestämma denna belastning Ps ur diagram-
met, fig. 4. Ur PK och Ps ha motsvarande
specifika påkänningar, oK och os, erhållits.
Elasticitetsmodulen E har även beräknats ur de
uppritade diagrammen, som den genomsnittliga
lutningen hos sammantryckningskurvan upp till
ca 30 % av brottlasten.
För att underlätta sortering och räknearbete
under bearbetningen av resultaten voro
registerkorten enligt fig. 4 i kanten försedda med hål. Vid
bearbetningen uppdelades de olika variablerna i
klasser med en efter respektive variabel anpassad
klassbredd. Hålen runt kortens kanter fördelades
på de olika variablerna, så att varje klass inom
en variabel representerades av ett motsvarande
hål, såsom framgår av fig. 4, som även visar
hålkortsnyckeln med variabler och klassgränser. De
värden som i siffror funnos på varje registerkort
kunde alltså inordnas under en viss klass, och
motsvarande hål i kortet klipptes därvid så, att
hålet blev öppet mot kanten av kortet, önskas
t.ex. samtliga 2" X 4" provkroppar av kortaste
längden uttagna, instickes en stålsticka i
korthögen genom det hål, som representerar 2" X 4",
och de klippta korten utskakas. Motsvarande
operation sker därefter i det hål, som svarar mot
den kortaste längden, och de kort som då
slutligen utskakas äro de sökta. På likartat sätt kan
även en sortering efter fallande eller stigande
hållfasthet, elasticitetsmodul etc. snabbt och
bekvämt utföras. Vid större antal kort eller
överslagsberäkningar kan utan vidare mitten av
klassen anses representera medelvärdet för
ifrågavarande variabel hos kort, som falla därinom.
Sambandet mellan storheterna oK och as å ena
sidan samt fuktighetshalt, kvistkvotssumma och
torrvolymvikt å andra sidan kan uttryckas
sålunda
ok = oro [ 1 + (u — 15) • xKu] • [1 -f Aa • xkka\ •
•[l+(roi5-0,40)-zKr] (1)
os = oso [1 + (u — 15) • xsu] ■ [1 + ka- xskz] •
•[l+(roi5-0,40)-*5r] (2)
Därvid äro oK0 och oSo de mot fuktkvoten 15 %,
kvistkvotssumman 0 och torrvolymvikten 0,40
g/cm3 svarande värdena på oK och os. Dessa bero
naturligtvis liksom %Ku och /Kkj och %Kr av
slank-hetstalet A.
Av de uppritade frekvenskurvorna för de olika
variablerna framgick det synnerligen viktiga
förhållandet bl.a. för hållfasthetsvärdena, att
frekvenskurvorna stupade brantare åt lägre
hållfasthetsvärden än åt högre. Detta medför, att den
klassiska beräkningsmetoden med det kvadratiska
medelfelet m , enligt vilken ca 95 % av samtliga
värden skulle ligga innanför ±2 m och 99,7 %
innanför en avvikelse på 3 m, icke blir strängt
tillämplig. Halva skillnaden till 100 % skulle
därvid kunna förväntas ha en lägre hållfasthet än
vad medeltalet minskat med 2 m respektive 3 m
<< prev. page << föreg. sida << >> nästa sida >> next page >>